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ABSTRACT

This technical report summarizes a new chemical equilibrium computer code

developed for general reacting systems, and presents equilibrium results for

several reacting pairs in liquid metal fuel combustion.) The content herein is

based on the M.S. dissertation submitted by P.J.Janfke, Department of

Mechanic LEn9i-f eri-ng, Universit--of-Wisconsin--Milwaukee.

Specifically, the object of this report is to develop a general computer

code for calculating complex chemical equilibrium of nonideal, multiphase,

electrolytic mixtures. The necessary thermodynamic foundation is provided and

thermodynamic potentials which describe the equilibrium state of a system are

developed from the fundamental relation using Legendre transforms. For a

system at a given temperature and pressure, the Gibbs' potential function

reaches a minimum value at equilibrium. The minimization of this function,

subject to element and charge conservation constraints, is viewed as a

constrained optimization problem, which is solved by the method of Lagrangian

multipliers. A new general computer code, called CEC-NMS, has been developed

and is presented here for computing chemical equilibrfa. The evaluation and

calculation of necessary program inputs such as thermodynamic data and

specifying te relative amounts of reactants are discussed. Equilibrium

results, Including temperature, density, and species concentrations as a

function of mixture fraction are presented for systems using the following

reactants:

1. HCI()-NH 3(aq)-H2 0(L)

2. Cl 2(g)-Na(L )

3. F 2(g) -Li(L)

4. SF 6(g)-Li(L )

- vii -



Several different modeling techniques are used to accurately estimate the

activity coefficients of the species in the above systems. The liquid phase

of the electrolytic solution is calculated using a modified Pitzer formulation

for multicomponent electrolytes with molecular species. The gas phase of the

electrolytic solution is modeled using a pressure-explicit second order virial

equation. The pure-component and cross-component second virial coefficients

are predicted using O'Connell's generalized method. For the systems

containing lithium and sodium, the gas phase is assumed to be ideal, and the

activity coefficients of the liquid metal and molten salt comprising the

immiscible liquid phases are calculated using the van Laar model.
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NOMENCLATURE

Roman

ai  constant in specific heat polynomial, equations 3.19 and 3.20

a. activity of species i, equation 3.301

A. constant in the enthalpy of formation, equation 3.38

Aki value of the subscript to the kth element in the molecular formula
of species i, equation 3.1

A0  natural log based Oebye-Huckel parameter, equation 6.3

A 1 empirical parameter in the van Laar model, equations 7.1 and 7.2

A12  empirical parameter in the modified van Laar model, equations
7.5-7.6 and 8.2

bi  constant in specific heat polynomial, equations 3.19 and 3.20

bl,b 2  empirical parameters in the van Laar model, equations 7.1-7.4

B empirical parameter in the modified van Laar model, equations
7.5-7.6 and 8.1

B k  number of moles of the kth element in the system, equation 3.1

B. constant in the enthalpy of formation, equation 3.38

Bm second virial coefficient of a gaseous mixture, equation 6.4

8ij pure component and cross component second virial coefficients for
pairs of gaseous species, equation 6.6

B.. term in equation 6.1ii

B.. tern in equation 6.1ii

ci  constant ir specific heat polynomial, equations 3.19 and 3.20

Ci  constant in the enthalpy of formation, equation 3.38

C second virial coefficient of a gaseous mixture, equation 6.4

C pi heat capacity per unit mole of pure component i, equation 3.19

C~i partial molar heat capacity of species i at infinite dilution,
equation 3.20

d i  integration constant in equations 3.21 and 3.22 for enthalpy
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0 constant in the enthalpy of formation, equation 3.38

0 M  dipole moment of a molecule, Table 6.2

e electron or charge, Section 6

Ei integration constant in equation 3.39 for Gibbs free energy of
formation

f mixture fraction , defined in equation 3.41

f fugacity of a single gas, equation 3.24

fi fugacity of species i in a gaseous mixture, equation 3.27

fi(...) function i of a given set of variables, Section 4

fY term in equation 6.1

F Helmholtz free energy, equation 2.12

G Gibbs free energy, equation 2.16

AGi standard Gibbs free energy of formation at the temperature of
the solution

aG~i standard Gibbs free energy of formation at the temperature and
pressure of the solution

h i  enthalpy per mole of pure species i, equation 3.17

H enthalpy, equation 2.14

H. partial molar enthalpy of species i in a solution, equation 3.16

H? partial molar enthalpy of species i in a solution of infinite
dilution, equation 3.18

AHfi standard enthalpy of formation of species i from the elements
that comprise it, equation 3.36

I ionic strength of a solution, equation 6.1

L number of phases in a system, equation 5.2

L Lagrangian function, equation 3.8

m number of elements in a system, equation 3.1

m i  molality of species i in a solution, equation 3.32

M molecular weight of a solvent, equation 3.32
0
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Ni  molecular weight of species i, equation 3.44

Mk molecular weight of element k, equation 3.44

n number of species in a system, equation 2.1

Ni  mole numbers of species i, equation 2.1

P pressure, equation 2.9

r total number of equations, equation 4.1

R universal gas constant, equatiun 3.17

R 0  mean radius of gyration of a molecule, Table 6.2

S entropy, equation 2.1

T temperature, equation 2.5

U internal energy, equation 2.1

v molar volume of a mixture of gases, equation 6.4

V volume, equation 2.1

V specific volume, equation 5.1

V. specific volume of phase J, equation 5.2

AV~i standard volume change for the formation of species i,
equation 3.40

Xt  mole fraction of species i in a phase, equation 3.26

X. an arbitrary unknown, equation 4.1

oYk mass fraction of element k in 0 fluid, equation 3.43

Yk Wmass fraction of element k in - fluid, equation 3.43
k
Y 0 mass fraction of species i in 0 fluid, equation 3.44

Y. mass fraction of species i in a fluid, equation 3.45*1

Yj mass fraction of phase j, equation 5.2

Zl,Z 2  composition variables in the van Laar model defined by equations 7.3
and 7.4

Z i  ionic charge of species i, equation 6.1
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Greek

arbitrary constant, equation 2.2

void fraction, equation 5.5
b

B.. binary interaction parameter, equation 6.1
13
ij binary interaction parameter, equation 6.1

Yi activity coefficient of species i, equation 3.17

6 denotes an increment in a variable, equation 4.2

a denotes a change in a quantity, equation 3.15

C some arbitrary small number, equation 4.4

Pi chemical potential of species i, equation 2.10

hi standard chemical potential of pure species i at the temperature of
the solution, equation 3.25

standard chemical potential of pure species i at the temperature and
pressure of the solution, equation 3.28

standard chemical potential of species i in a hypothetical solution
of unit molality at the temperature and pressure of the solution
under discussion, equation 3.32

stoichiometric coefficients of a reaction, equation 3.37

k  the kth Lagrangian multiplier, equation 3.8

p density, equation 5.1

k  dimensionless Lagrangian multiplier, equation 3.13

summation operator

T relaxation factor, equation 4.6

*conserved property, equation 3.41

9 ij binary association parameter, Table 6.3

Others

a partial derivative operator, round-d

II II norm operator, equation 4.8
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Superscri pts

m iteration number, equation 4.4

p "product" fluid, equation 3.41

0 "zero" fluid, equation 3.41

C "infinityn fluid, equation 3.41

° standard or reference state (function of T only), equation 3.23

standard or reference state (function of T and P), equation 3.28

prime, used in equation 6.1 and 7.5

Subscripts

1,2 used to denote components of a binary solution, equation 7.1

aq aqueous, as in NH3(aq)

c crystal, as in NH4C1(c)

f denotes "formation", equation 3.34

g gas phase

i dummy variable for species

j dummy variable for phases, equation 5.3

k dummy variable for elements

L liquid phase

m denotes "mixture", equation 6.4

p products, equation 3.15

r reactants, equation 3.15

s solid phase

w denotes "water", equation 6.2

0 denotes "solvent", equation 3.32

* used in equation 6.3
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1. INTROOUCTION

1.1 Definition of Equilibrium

As an introduction to this work, it is useful to present several

fundamental definitions. Callen (1985) defines thermodynamic equilibrium as

follows:

... in all systems there is a tendency to evolve toward states in
which the properties are determined by intrinsic factors and not by
previously applied external influences. Such simple terminal states
are, by definition, time independent. They are called equilibrium
states. (Callen, 1985, p. 13)

In addition, he emphasizes the importance of the concept of equilibrium by

calling the determination of equilibrium states "... the single, all-

encompassing problem of thermodynamics" (Callen, 1985, p. 26).

The thermodynamic equilibrium of a simple system (i.e., systems that are

not acted on by electric, magnetic, or gravitational fields, and are

macroscopically homogeneous) requires three distinct kinds of equilibrium

(Kuo, 1986, p. 9):

1. Thermal equilibrium - exists when all parts of the system are at the

same temperature.

2. Mechanical equilibrium - exists when there are no unbalanced forces

within the system.

3. Chemical equilibrium - exists when a system has no tendency to

undergo a spontaneous change in chemical composition.

1.2 Applications

The topic of this report is the computation of chemical equilibrium for

multiphase systems. Numerous applications exist for chemical equilibrium

calculations. Van Zeggeren and Storey (1970) describe four major areas:
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1. Determining the specific impulse of a propellant in a rocket motor.

2. Calculation of the properties of explosives.

3. Chemical processing.

4. Calculating the behavior of multiphase biological cell systems.

In addition, Smith and Missen (1982) discuss applications of chemical

equilibrium analysis in chemical kinetics, inorganic and organic chemistry,

energy conversion, analytical chemistry, and environmental chemistry.

The impetus for this particular foray into the field of chemical

equilibrium involves modeling the reaction zone structure of a turbulent,

reacting jet discharging into a stagnant bath. As developed by Shearer et al.

(1979), Chen and Faeth (1982, 1983) and Chan et al. (1987, 1988), the

analytical model assumes local thermodynamic equilibrium at each point in the

flow. As an Input it requires the calculation of equilibrium compositions for

all possible ratios of oxidant to fuel. This model allows the prediction of

the concentration of chemical species, velocity, temperature, and mixture

density at all points in the flow field. It has been used with reasonable

success by this laboratory at the University of Wisconsin--Milwaukee (UWM) in

the past (Chan et al., 1987, 1988).

1.3 Computational Methods

Numerous methods have been proposed for computing chemical equilibrium in

the last 40 years. These are reviewed by Gautam and Seider (1979), Smith and

Mlssen (1982), van Zeggeren and Storey (1970), and Zeleznik and Gordon

(1968). While there are several ways of grouping the approaches, Zeleznik and

Gordon (1968) divide the general purpose methods into the equilibrium constant

approach and the free energy minimization approach. In the former method

chemical reaction equations are written to describe the relevant equilibria.
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Equilibrium constants for these equations are calculated which relate the

concentrations of the species in the reaction. The resulting system of

nonlinear equations may be solved using a variety of techniques. The latter

method involves a search for the minimum in the Gibbs free energy of the

system. While the equilibrium constant method as formulated by Brinkley

(1947) and the free energy minimization method as formulated by White et al.

(1958) can be shown to be computationally equivalent (Zeleznik and Gordon,

1960; Smith and Mlssen, 1982), the latter method eliminates the necessity of

writing chemical equations.

1.4 Existing Computer Programs

Several computer programs are available for the solution of general

chemical equilibria. Probably the best known is CEC-72 (Gordon and McBride,

1971). This computer code can be used for ideal, multiphase calculations,

provided the total mass of the condensed (i.e., liquid and solid) phases are

no more than a few percent of the total mass of the system. No provision is

made for the use of activity coefficients to describe nonideal mixtures. The

thermodynamic state of the system may be specified by assigning temperature

and pressure (T,P), enthalpy and Pressure (H,P), entropy and pressure (S,P),

temperature and volume (T,V), internal energy and volume (U,V), or entropy and

volume (S,V). A data file containing thermodynamic property data for more

than 400 chemical species over a temperature range of 300 to 5000 K is

provided.

Another popular computer program is SOLGASMIX (Ericksson 1971, 1973, and

1975). This program can be used to calculate equilibria for nonideal,

multiphase systems, provided that the activities of the species can be

specified on a mole fraction scale (i.e., y1 - 1 as Xi . 1, where

-3-



Yi is the activity coefficient and Xi is the mole fraction of species i

in the phase). Therefore, it is not applicable to electrolytic solutions,

where the activities of the solutes are normally based on molality. The

thermodynamic state may be specified by temperature and pressure only. All

thermodynamic data must be supplied by the user. An extension of this program

by Besmann (1977) uses the ideal gas law to allow the calculation of

equilibria at constant total gas volume. Therefore, the thermodynamic state

may also be specified by temperature and volume (T,V).

Ericksson (1979) also developed a program called SOLGASWATER, which is

designed to be used to calculate multiphase, aqueous equilibria. The system

is assumed to have a solvent of unit activity and a constant volume gas

phase. Relationships specifying the activity coefficients of the solute

species must be provided by the user. Because there is no provision for

considering nonideal solvents, accurate predictions of equilibrium

compositions are limited to dilute solutions.

Smith and Missen (1982) present two algorithms, BNR and VCS, useful for

calculating ideal, multiphase equilibria at a specified temperature and

pressure. The BNR program is based on the Rand method (White et al., 1958),

and the VCS program is based on a formulation using extent of reaction

variables. Thermodynamic data must be supplied by the user for both programs.

Zemaitis et al. (1986) discuss several computer programs that can be used

for electrolytic solutions. Generally, the publically available programs are

somewhat limited in terms of features and applicability. Several proprietary

programs, however, appear to be quite complete and powerful.

1.5 Objectives

Work in this laboratory requires a computer code with a number of

features not found (to the authors' knowledge) on existing, publically

-4-



available programs. These include the ability to calculate equilibria of

electrolytic and non-electrolytic, multiphase, nonideal mixtures at either

specified temperature and pressure (T,P) or specified AH and pressure

(&H,P) (i.e., the temperature is determined indirectly by inclusion of an

energy equation which contains a specified enthalpy change term - for the

adiabatic case, AH = 0). Flexibility in the specification of activity

coefficients is required, so that they may be written in whatever convention

(molality or mole fraction) is relevant to the particular problem.

This report presents the development of such a computer code which

utilizes a variation of the direct Gibbs free energy minimization approach

first presented by White et al. (1958) while working at Rand Corporation.

Section 2 attempts to provide the thermodynamic framework on which a

discussion of chemical equilibria can be based. Section 3 presents the

analytical derivation of the direct minimization approach. Section 4

describes the numerical technique used to solve the resulting nonlinear

equations. The computer code is described in Section 5 and several

applications of the program are demonstrated in Sections 6-9.

-5-



2. THERMODYNAMIC FUNDAMENTALS

Callen (1985) bases his development of thermodynamic theory on four

postulates. We present the first three of his postulates below. The fourth

postulate is a restatement of the third law of thermodynamics and is not

relevant to this discussion.

2.1 Postulates

The first postulate in Callens' development proposes the existence of the

equilibrium state (recall the definition of a simple system given in Chapter

1):

Postulate I. "There exist particular states, (called equilibrium
states) of simple systems that, macroscopically, are characterized
completely by the internal energy U, the volume V, and the mole
numbers N1 , N2 , ..., Nn of the chemical components." (Callen,
1985, p. 13)

Several definitions are necessary before proceeding with the next

postulate. We define a composite system as two or more simple systems. We

further define extensive parameters as those parameters that have values in a

composite system equal to the sum of their values in each of the subsystems.

The second postulate proposes the existence of entropy and the entropy maximum

principle:

Postulate II. "There exists a function (called the entropy S) of
the extensive parameters of any composite system, defined for all
equilibrium states and having the following property: The values
assumed by the extensive parameters in the absence of an internal
constraint are those that maximize the entropy over the manifold of
constrained equilibrium states." (Callen, 1985, p. 27)

The relation that gives the entropy as a function of the extensive

parameters is called the fundamental relation. If the fundamental relation of

a particular system is known, all possible thermodynamic information about the

system can be derived from it. The fundamental relation in entropic form can

be written as:

-6-



S = S(U, V, N1, N2, ..., Nn) (2.1)

The third postulate specifies certain properties of entropy:

Postulate III. "The entropy of a composite system is additive over
the constituent subsystems. The entropy is continuous and
differentiable and is a monotonically increasing function of the
energy." (Callen, 1985, p. 28)

The additivity property of entropy requires that the entropy of a simple

system be a homogenous first-order function of the extensive parameters. That

is, if all the extensive parameters of a system are multiplied by a constant

a, the entropy is multiplied by this same constant:

S(aU, aV, aN1 ..... aNn) = aS(U, V, Ni , ... , Nn) (2.2)

2.2 Equations of State

The significance of the differentiability, continuity, and monotonic

properties of the entropy are that they allow the entropy function to be

inverted with respect to the internal energy. The internal energy is then a

single-valued, continuous, and differentiable function of S, V, Ni, ....

N n . The fundamental equation can then be written in the form:

U = U(S, V, Nit .... Nn) (2.3)

Computing the first differential:

n
dU = (au/aS)v,N dS + (aU/aV)s, N dV + X (au/aNi)s'N dNi (2.4)

The partial derivatives in the preceding equation occur so frequently that

special symbols are used to represent them:

(au/as) T (2.5)
v,N-

-(aU/aV) E P (2.6)

- 7 -
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(auaN (2.7
i s,v,N i(2.)

T, P, and pi are the temperature, pressure, and chemical potential of the
.th
1 component, respectively.

The functional relationships

T = T(S, V, Nit .... Nn) (2.8)

P = P(S, V, N1, .... N n) (2.9)

vi = Pi(S, V, N1, .... Nn) (2.10)

are called equations of state. Since the fundamental equation is homogeneous

first order, the equations of state are homogeneous zero order. This means

that if we multiply each of the independent extensive parameters by a scalar

Q, the function is left unchanged:

T(QS, cV, N1, .... QNn) = T(S, V, Nt .... , Nn) (2.11)

Parameters for which this is true are said to be intensive parameters.

2.3 Thermodynamic Potentials

A mathematical technique known as the Legendre transformation (Callen,

1985, pp. 137-151) is performed on the energy representation of the

fundamental relation (equation 2.3) in order to develop fundamental relations

in more convenient forms for particular problems. The Legendre transformed

functions are called thermodynamic potentials.

The partial Legendre transform of U that replaces the entropy by the

temperature as the independent variable is called the Helmholtz potential (F)

or Helmholtz free energy:

F = F(T, V, N1, N2, ... N n) (2.12)
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also

F = U - TS (2.13)

As a result of the entropy maximum principle stated in postulate I, it can be

shown that the Helmholtz potential of a system at constant temperature is

minimized at equilibrium.

The partial Legendre transform of U that replaces the volume by the

pressure as an independent variable is called the enthalpy (H):

H = H(S, P, Ni t N2, .... Nn) (2.14)

also

H = U + PV (2.15)

The enthalpy of a system at constant pressure is minimized at equilibrium.

The partial Legendre transform of U that simultaneously replaces the

entropy by the temperature and the volume by the pressure as independent

variables is called the Gibbs potential (G) or Gibbs free energy:

G = G(T, P, Ni p N2 t .... Nn) (2.16)

also

G = U - TS + PV (2.17)

The equilibrium state of a system at constant temperature and pressure is the

state in which the Gibbs potential is minimized.

The homogeneous first-order property of the fundamental relation

described above permits equation 2.3 to be written in a different form, known

as the Euler relation (Callen, 1985, p. 59):

U = TS - PV + YiNl + . n (2.18)
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Substituting the Euler relation into equation 2.17, we get

G = pIN 1 + P2N2 + - + PnNn

or, in more compact notation

n
G i aiNi (2.19)

Therefore the Gibbs potential for a multicomponent system is related to the

chemical potentials of the individual components.
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3. FORMULATION OF THE DIRECT MINIMIZATION TECHNIQUE

As shown in Section 2, the condition for chemical equilibrium at constant

temperature and pressure is the minimization of the Gibbs potential. This

minimization is subject to the element abundance constraints (conservation of

chemical elements making up the species of the system).

3.1 Constraint Equations

The constraining element abundance equations may be written as

n
Aki Ni = Bk; k 1, 2, ... , m

i =1

or, equivalently

n
AkiN - Bk = 0; k 1, 2, ... , m (3.1)

i =1

where Aki is the value of the subscript to the kth element in the molecular

formula of species i; Ni is the number of moles of specie i; Bk is the

fixed number of moles of the kth element in the system (determined from the

initial conditions); m is the number of elements; and n is the number of

species (Smdith and Missen, 1982, p. 15).

When ions are present, we must add a charge balance equation

(conservation of electrons) to the elemental abundance equations. This

equation can be written as

n
AkiNi - Bk = 0; k = m + 1 (3.2)

i1=1

where the coefficients A m+l, i i = 1, ..., n, are the charge of the ith

specie. For molecular species, A = 0; for an ion with a +2 charge,
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Am1l.i = 2; for an ion with a -1 charge, A m+l i _ = -1, etc. Since the

overall charge of the mixture is zero, 8m+ 1 = 0. The complete set of

constraint equations are

n
Aki N1 - 8k = 0; k = 1, 2, ..., m + 1 (3.3)

1=1

These equations can also be written in matrix form as

[A] [N) = [B) (3.4)

where [A] is the formula matrix, [N] is the species-abundance vector, and [B]

is the element abundance vector (Smith and Missen, 1982, p. 16). The matrices

may be written in detail as

A11  A12  - An

A21  A22

[A] = (3.5)

A m+ll Am+l,n

N 1  B1

N2  B2

[N]= . (3.6) and [B]= . (3.7)

Nn, 8 ln

The formula matrix (A] must be checked to ensure that it does not contain

any linearly dependent rows. If any of the rows are linearly dependent, a

singular coefficient matrix will result (Smith and Missen, 1982, p. 213). The

offending rows must be identified and eliminated. One technique is to use

Gauss-Jordan reduction to reduce the left side of (A] to unit matrix form
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(Smith and Missen, 1982, p. 24). Linearly dependent rows will appear as a

zero vector and may be removed from the system.

3.2 Deriving the Lagrangian Function

We are now ready to derive the equations used in the direct minimization

technique. The extremum function G must be minimized, subject to the side

conditions of equation 3.3. This type of constrained optimization problem can

be solved using the method of Lagrange multipliers (for a brief review of the

method, see van Zeggeren and Storey, 1970, p. 158). The Lagrangian function L

is defined as:

m+l n
L = G + I vk ( I AkiNi - 8k) (3.8)

k=l i=l

where wk are Lagrangian multipliers. Substituting in equation 2.19 for G,

we get:

n m+l n
L = X uiNi + II k I AkiNi -Bk) (3.9)

i=l k=l i=l

Taking the derivative and setting equal to zero:

n m+l
dL = X (aL/aN i) dNi + I (aL/avk) dwk = 0 (3.10)

i=1 k=l

Then, since N1, N29 ...; and wl' I2' ... ; are independent, the

corresponding partial derivatives must also be equal to zero

m+l

(aL/aNi)Nw = ui + I AkiWk = 0; i = 1, ... , n (3.11)
k=l

n
(aL/awk)Nw = I AkiN i - Bk = 0 k = 1, .... m + 1 (3.12)
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Dividing equation 3.11 by RT to and defining 0k E wk/RT, we then

have the set of equations

M+1

1i/RT + I Akiok = 0; 1 = 1, ... , n (3.13)k=l

and the original conservation equations

n
AkiNi - 8k = 0; k = 1, .... m + 1 (3.14)

i =1

a total of n + m + 1 equations. For equilibrium conditions at a specified

temperature and pressure (T,P), these equations can be solved for the n + m -

1 unknowns N.; i = 1, 2, ..., n and dk k = 1, 2, ... , m+l.

For equilibrium conditions at a specified enthalpy and pressure (aH,P),

the final mixture temperature becomes an unknown and we must add another

equation to the above set. This equation is called the energy equation and

can be written as

Hp(T'P'N1. ... )p = Hr( TPNIt "'')r + AH (3.15)

where Hr is the total enthalpy of the reactants, H is the total enthalpy

of the equilibrium products and AH is some specified enthalpy change. The

temperature is solved by iteration like any of the other unknowns. In many

cases the enthalpy change may be due to heat transfer; for the adiabatic case,

aH = 0.

The set of equations 3.13, 3.14, and 3.15 contain several parameters that

we must derive expressions for. These include the chemical potential of each

species (pi), the product and reactant enthalpy (H p, Hr), and the

number of moles of each element in the system (Bk).
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3.3 Enthalpy

The total enthalpy of a mixture (whether it be a mixture of products or a

mixture of reactants) may be calculated from

n
H = I HtNt (3.16)

1=1

where Hi is the partial molal (or molar) enthalpy of species i. The partial

molar enthalpies of the species can be calculated from one of the following

equations depending on the convention used to specify the activity

coefficients of the species (Denbigh, 1981, p. 128 and p. 279). For the

convention yi 1 as Xi + 1, then

Hi  i - RT2 (alnyi/aT) (3.17)

where h1 is the enthalpy per mole of the pure species i. For the convention

Yi4 l as Xi 40 and the convention Y, 4 1 as mi 0 0, then
1

H1 =H1 - RT 2(alnyi/aT) (3.18)

where Hi is the partial molar enthalpy of species i at infinite

dilution. Generally, the partial derivatives in the above equations are

calculated numerically by perturbing the appropriate function with respect to

temperature. Of course, for an ideal solution, the activity coefficients are

always equal to one, and the second term in each of the above equations will

disappear.
a

The temperature dependence of hi and H i can be calculated from

specific heat data. Experimental data for the specific heat of a substance

can be curve-fit to a polynomial of the form
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Cpi = ai + biT + ciT 2  (3.19)

where Cpi is heat capacity per unit mole of the pure component i, or

Cpi = ai + biT + ciT2  (3.20)

0

where Cpi is the partial molar heat capacity of species i at infinite

dilution. Using either the equation dh = C pidT, or the equation dH.00

= C idT, the polynomial can be integrated to get the enthalpy of the

species as a function of temperature:

hi = Cpi dT + constant
0 0

Hi = C .pidT + constant

or

hi = aiT + b iT
2/2 + c.T3/3 + d (3.21)

H. = aiT + biT 2 /2 + ciT 3 /3 + d (3.22)

The integration constant di can be calculated if the enthalpy is known at

any temperature within the range of applicability of the equation.

3.4 Chemical Potential

From Denbigh (1981) the chemical potential for a single perfect gas is

defined as follows:

0

p(T,P) = p (T) + RTln P (3.23)

where p°(T) is the standard chemical potential (or Gibbs free energy per

mole) at temperature T and one atmosphere pressure; P is the pressure in

atmospheres, and R is the universal gas constant.
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For a single imperfect gas

0

1(T,P) = V (T) + RTln f,

f yP, (3.24)

y - 1 as P - 0

where f is the fugacity of the gas, y is the fugacity coefficient, and

p°(T) is the chemical potential of the gas at unit fugacity. Since y is

very nearly 1 at P = 1, the numerical value for p°(T) is essentially the

same as in equation 3.23. Note that for a perfect gas, y = 1 and equation

3.24 reduces to equation 3.23.

For a perfect gas mixture

0

pi(T,P,Xi) = Pi(T) + RTln Pi (3.25)
0

where pi (T) is the standard chemical potential of gas i in its pure
0

state at atmospheric pressure (exactly the same as p1i(T) in equation

3.23). Xi is the mole fraction of component i in the gaseous mixture

defined by

ngas
Xi = N./ i Ni  (3.26)S i=l

and Pi is the partial pressure of gaseous species i defined by Pi = XiP.

For an imperfect gas mixture

pi(T,P,Xi) = pi(T) + RTln fi
(3.27)

f = YiX iP

where f. is the fugacity of species i, yi is the fugacity coefficient ofi0

species i in the gaseous mixture, and i(T) has the same value as in
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equation 3.24. Once again, for an ideal gaseous mixture yi = 1 and

equation 3.27 reduces to equation 3.26.

The chemical potential for condensed phase solutions is defined

similarly. When no distinction is made between the solvent and solutes in a

solution, the Raoult convention is commonly used for all species in that

solution. When a distinction is made between solvent and solutes (e.g.,

aqueous solutions), the Henry convention is commonly used for the solute

species and the Raoult conventicn for the solvent species (Smith and Missen,

1982, p. 52).

For a Raoults' law ideal solution

pi(T,P,Xi) = pi(T,P) + RTIn Xi  (3.28)

where i(T,P) is the chemical potential of pure species i at the

temperature and pressure of the solution.

For a solute following the Henrys' law convention

pi(TP,Xi) = pi(T,P) + RTln Xi  (3.29)

where pi(T,P) is the chemical potential of solute species i in an

infinitely dilute solution and Xi is te mole fraction of the ith liquid

species in the particular liquid phase.

For a nonideal solution

pi(TP,Xi) = pi(T,P) + RTIn ai  (3.30)

where ai is the activity of species i in the solution. For non-electrolytic

solutions the activity can be written as

a= YiXi (3.31)
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where yi is the activity coefficient of species i in the solution which

accounts for any deviation from ideality. Note that for an ideal solution,

Yi = 1. For a species which approaches Raoults' law, yi 4 1 as Xi

41. For a solute species which exhibits Henrys' law behavior, yi i  1

as Xi 4 0.

In some cases the amount of solute is specified on the molality scale.

Then

ui(T,P,mi) = ui(T,P) + RTln ai
(3.32)

Yi 1 as mi  0

where ai = Yimi and mi = 1000 Ni/(M 0N0 ). Mo is the molecular weight of the

solvent and N is the number of moles of the solvent. Ui(T,P) is the chemical

potential of the solute in a hypothetical ideal solution of unit molality at

the same temperature and pressure as the solution under discussion (Denbigh,

1981, p. 276).

The chemical potential of a single species phase such as a pure solid is

written as

Ui(T,P) = ui(T,P) (3.33)

where i(T,P) is the chemical potential of the pure species i at the

temperature and pressure of the phase. All of the above specifications for

chemical potential contain a standard reference potential for that species.

It is necessary to assign a numerical value to that term. According to van

Zeggeren and Storey, (1970), p. 31, we may set

pi(T) = AGfi(T) (3.34)
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where &Gfj(T) is the standard Gibbs free energy of formation of the

pure species (or ideal one molal solution, whichever the case may be) at

temperature T. Similarly, for reference potentials that are a function of

pressure

pi(T,P) = AGfi( T ,P) (3.35)

where AGfi(T) is the standard Gibbs free energy of formation of species

i at temperature T and pressure P. These quantities can be found tabulated

for a wide range of species in the literature e.g., Wagman et al. (1968) and

JANAF (1971). If it is only available at one temperature, values at other

temperatures can be calculated from enthalpy data using a form of the van't

Hoff equation (Denbigh, 1981, p. 143):

[a(-&GGfi/T)/aT]p = aHi;/T 2  (3.36)

0

where the enthalpy of formation AHfi represents the enthalpy change

occurring when species i is formed from the elements comprising it. For a
0

solvent, a gas or a Raoults' law solute, &Hfi may be calculated from

the enthalpy per mole of the pure component, hi (equation 3.21), and

enthalpy per mole of the elements comprising it

0

AHfi = hi - I v h. (3.37a)
r

where h and vi are the enthalpy and the stoichiometric coefficient of

the jth element in the formation reaction. For a Henry's law solute,
0

AHfi may be calculated from the partial molar enthalpy of the species
0

at infinite dilution, Hi (equation 3.22), and the enthalpy per mole of

the reference elements:

- 20 -



AHfj = H;~ vh~ (3. 37b)
r J J

Assuming that the enthalpies of the elements, hJ, are fitted to the

same type of function as the species formed (given by equations 3.21 and

3.22), we have

° BI2/2

AHfi iT + /2 + CiT3/3 + 0 (3.38)

where A E ai - vjaj, Bi E bi - I vib3 , etc. Integrating equation 3.36,

-AGfi/T = J (Ai/T + B1/2 + CiT/3 + D1/T ) dT + constant

Finally,

AGfi = AiT ln(T) - B.T2/2 - CiT3/6 + 0i + EiT (3.39)

Since most compilations list the Gibbs free energy of formation at a

pressure of one atmosphere only, we similarly can calculate values at other

pressures using (Denbigh, 1981, p. 300):

0 0

[a(AGfi/T)/aP]T = AVfi (3.40)

where AVfi is the standard vaolume change for the formation of species

i, analogous to AHfi and aG fi

3.5 Specifying Amounts of Reactants

The relative amounts of reactants present can be specified by a parameter

called the mixture fraction (Spalding, 1979, ch. 6), usually denoted by the

symbol f. Suppose we divide the components of the reactants into two

portions: the "0 (zero) fluid and the "-" (infinity) fluid. The fluid

resulting from the mixing of the 0 fluid and the - fluid will be called the
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"p* (product) fluid. For any conserved property *, the mixture fraction is

defined as

f =- (*P _C)/(,0 _ =) (3.41)

Usually, the fluid state at - and 0 is known, and we wish to determine

+P at a given mixture fraction. Rewriting equation 3.41, we get

p = f 0 + (1 - f) * (3.42)

Therefore, for f = 1, *P 0 0, and for f = 0, OP = '. If

we exclude nuclear reactions, then Yk* the mass fraction of element k in a

mixture of compounds, is a conserved property (Kays and Crawford, 1980, p.

344). Then we can write

Y = fyo + (I - f) Y k = 1, 2, ... , m (3.43)

where

Y0 = Y (Mk/M i) Aki; k = 1, 2, .... m (3.44)i =l

n

Yi = Y (Mk/Mi) Aki; k = 1, 2, .... m (3.45)

Y i Y', are the mass fraction of species i in the 0 fluid and =
fluid, respectively; Mk and Mi are the molecular weights of element k and

species i respectively; and Aki are the number of moles of element k in

species i (defined previously).

The number of moles of element k in the system, 8k, can be written as

Bk = Y/Mk k = 1, 2, ..., m (3.46)

Using equation 3.43, we get
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B= (fY0 + (I - f) Y)/M ; k = 1, 2, ... , mk k kk

or

n n
B= f A Yk'Y/M + (1 - f) A YkCO /M k = 1, 2, ... , m (3.47)
k =1 AkiYi/Ml1=1

Equation 3.47 can be used to calculate the components of the B vector when the

mixture fraction f, the mass fractions of all species in the 0 fluid state
0 0

Y. and in the - fluid state Y. are specified. For the B vector,

the computer code developed in later section take the mass of the mixture as

one kg such that 8k can then be interpreted as the number of moles of kth

element in a unit kg mass of mixture.
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4. NUMERICAL METHOD

4.1 Newton-Raphson Technique

The system of nonlinear equations set up by the direct minimization

technique in Section 3 can be solved using Newton-Raphson iteration (Gerald

and Wheatley, 1984, pp. 135-137). The set of r = n + m + 1 equations to be

solved can be written in the following form:

f1 (1-1' 12- . ... -) =  0

f 2 (x-1' 12 .. 4~)  = o

(4.1)

f (X 1r X)fr (-1' -2' .... ' -r ) =0

where X, _2 , .... X are the roots of the equations. The relationship

between any fi (X1 + &XIV X 2 + aX 2 ... ) and fi (XI X2# .. ) where

6XI , 6X ..... 6Xr denote arbitrary increments in Xl, X2, ...K Xr is given by

Taylor's Expansion (Callen, 1985, p. 474):

fi (Xl + 6X' X2 +  X2.

= fi (X1' X2 P "") +

+ (afi/ax i) 6XI + (afi/ax 2) 6X2 + ... ] (4.2)

" (1/2) [(a2 f/ax 2 ) 6x +

+ ... ; = 1, 2, ... , r

If we define 6Xi = Ki - Xi, where Xi and Xi are the true and guessed roots,

respectively, so that

fi (X1 + 6xl X 2 + 6X2 ' " = .. i-1' f-2 .... = 0; i = 1, 2, ... , r

(4.3)
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we could solve the above set of equations for the 6Xi and calculate the

roots X I from Xi = X1 + aXi" In practice, if the initial estimates

X are near enough to the solution, we can truncate the series after the

first order terms and get an approximation Xm+ l to the final solution Xi:

m+l M+l m mA +fi (X I, X , . .) =0 = fi (X ' XT, ...) +  [afi/ax ) 6XI + ""

or

m m

- f (X', X2, .. ) = (af/axl) aX + (afi/aX2) AX2 + .";

i = 1, 2, ..., r (4.4)

where X m+l = Xm + 6X. This set of linear equations is solved using

Gaussian elimination (Gerald and Wheatley, 1984, p. 91) for the unknowns

6X1 . The new approximations are calculated from X+l = Xm + SX and

the procedure is repeated until (6Xi)max < c, or f (Xl, X2, " max

where cI and c2 are some small numbers (l.E-6 and 5.E-5 respectively,

in this case).

In order to solve the above set of equations we must calculate the

partial derivatives appearing on the right sides. Rather than derive an

expression for the partial derivatives by hand, it is easier to approximate

the partials numerically. This is done by recalculating the function with a

small perturbation to each of the variables in turn (Gerald and Wheatley,

1984, p. 137):

aflaXl = [fl (XI + 6, X2, ...) - fl (Xl' X 2 ... /6

afl /ax2  = [f I (Xl' X2  + 6 ... ) - fl (Xl' X2 ' . .)]/6(
(4.5)

af1/aXr [f1 (x11 .... Xr + 6) - fl (X1 . ' Xr)]/
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Thus, the solution to the set of nonlinear equations is approximated by

solving the linear set of equations. Each successive approximation generates

a set of solutions closer and closer to the final solution.

4.2 Relaxation Factor

Certain modifications to this technique are necessary in order to improve

the stability of the iteration. A step-size parameter (or relaxation factor)

can be introduced as follows:

m+l m + Taxi (4.6)

where 0 < T < 1. Poor initial guesses can lead to a large negative

correction which could cause the number of moles of a species to become

negative. We choose the relaxation factor to ensure that the mole numbers of

all the species remain positive throughout the iteration process

(non-negativity constraint). We start the process with T = 1 and find the

maximum value for T less than one that will ensure that all of the new mole

number estimates will be positive. The algorithm used is

Start with T = 1

For 1= 1, 2, ..., n

If 6X1 < 0, Then

(4.7)
min (T- Xm (1 - C)/ax

Tmax =mn (r, i

T max

Next i

where c is some small number (0.01 in this case). Note that there is no

such non-negativity constraint on the Lagrangian multipliers. The Euclidean

norm of the error vector is defined as (Gerald and Wheatley, 1984, p. 115):
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fr XmI . 2]10.5
fm rf (X'1, 2 205 (4.8)

i=1

As long as the Newton-Raphson corrections decrease the norm of the error

vector (i.e., the iteration is converging) T is set equal to Tmax * If

for any iteration m + 1, the norm is greater than the norm calculated at the

previous step, i.e.

II f"l II > II fm I (4.9)

the relaxation factor is reduced by setting T equal to 0.7T max and the

norm at the m + 1 step is recalculated (see Prausnitz et al., 1980, p. 116).

This reduction of T is repeated until the norm decreases (in which case the

iteration proceeds), or until T becomes too small, say 0.01, (in which case

T is just set equal to Tmax and the iteration is allowed to take a step

which increases the norm of the error vector).

4.3 Species Present in Small Amounts

When a species in a multispecies phase is present in a very small amount,

it forces the step-size parameter to become very small, slowing the

convergence of the algorithm. The species must then be removed from the main

calculation. After convergence is achieved with this species removed, the

amount of the species present may be calculated form (Smith and Nissen, 1982,

pp. 217-218):

* m+l
Xi = exp (- pi/RT - I Akiak) (4.10)

k=l

This equation, of course, is only valid if the species is indeed present in a

very small amount at equilibrium. Note that during the course of iteration, a

species may be erroneously removed (especially if poor initial estimates are
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given). If so, equation 4.10 provides a means of checking if any other

species should have been included in the main calculation.

An equation similar to that given above may be used to determine if a

single species phase (such as a pure solid species) should be included in the

calculation. Equilibrium may at first be calculated with only multispecies

phases present, then the following test may be made to determine if the

conditions are favorable for the formation of a single species phase (Smith

and Missen, 1982, p. 59):

. m+l
Pi/RT + X A kia k < 0 (4.11)

k=1

If the quantity given above is less than zero, the single species phase in

question should be added to the system and equilibrium recalculated. If the

quantity is exactly zero, the phase is at incipient formation. If the

quantity is greater than zero, the phase should not be included. A similar

test may be used for multispecles phases, as well (Smith and Missen, 1982, p.

59).
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5. COMPUTER PROGRAM

The equations developed in the previous sections have been implemented in

a computer program called CEC-NMS (Complex Equilibrium Calculations of

Nonideal, Multiphase Systems). For a listing of the program, see the

appendix. The program is written in Fortran 77 and is approximately 1300

lines long, including a generous number of comment cards. CEC-NMS consists of

a main program unit and 9 primary subroutines. Additional subroutines to

calculate the activity coefficients for nonideal solutions may also be

present, depending on the particular system.

5.1 Main

The main program unit performs several functions:

1. Declare and initialize variables.

2. Set up chemical system (species symbols, molecular weight, species

coefficient matrix, etc.).

3. Open output file and read in data for calculation point.

4. Call subroutine GUESS to provide initial estimates.

5. Calculate reactant enthalpy.

6. Call subroutine NLSYST, the Newton-Raphson equation solver.

7. Print out error messages, if any.

8. Call subroutines PREOUT and OUTPUT to print out results.

9. Return to step 3 and read in data for the next calculation point.

Stop program execution after last data point.

5.2 Gcal

Subroutine GCAL calculates the standard Gibbs potential of each species

in the system at a given temperature. In the present form, equation 3.39 is

used. The user must supply the coefficients Ai, Bi. etc.
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5.3 Hcal

Subroutine HCAL calculates the partial molar enthalpy of the species in

solution (Hi in equation 3.16) using equations 3.17-18 and 3.21-22. The

user must supply the coefficients at, bi, etc. Later versions of the

program combine subroutine GCAL and subroutine HCAL into one subroutine called

HSGCAL.

5.4 Preout

Subroutine PREOUT calculates the number of moles of any species which

have been removed from the main calculation using equation 4.10. Also

calculated are various mass and mole fractions, the mixture density, and the

mixture void fraction (volume fraction of gas phase present). The mixture

density, p (kg/m 3], is defined as

p R 1/V (5.1)

where V is the specific volume of the mixture [m 3/kg]. The specific volume

of a mixture of L phases may be expressed as

L
V = I Y.V. (5.2)

j=1 J

or

L
V = . Yi/pj (5.3)j=l

where Vj. pi, and Y are the specific volume, density, and mass

fraction of phase j in the total mixture, respectively. Substituting equation

5.3 into 5.1, we have

L
P llM I Y /Pj) (5.4)

J-=-
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The void fraction of the mixture is defined as

V gas/V (5.5)

or

ngas n
a, = ( i Y/pj)/( j Y /Pj) (5.6)

5.5 OutDut

Subroutine OUTPUT sends detailed results for a calculation point to the

line printer and abridged results to a file. The file is later used to plot

the results.

5.6 Guess

Subroutine GUESS provides initial estimates needed to begin the iteration

at each calculation point. The user must provide these estimates for every

species. Fortunately, CEC-NNS has converged quite well for all test systems

with rather arbitrary initial guesses.

5.7 Nlsvst

Subroutine NLSYST solves the system of nonlinear equations by a

step-limited Newton-Raphson technique. The subroutine performs the following

functions:

1. Declare and initialize variables.

2. Begin calculations with only multispecie phase present. Single

species phases will be added one at a time after convergence is

achieved with only multispecies phases present.

3. Call subroutine FCN to calculate function values.

4. Remove any specie or phase that is present in a very small amount

(i.e., less than 10-10).
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5. Remove any specie that is causing convergence problems (i.e., if

convergence is not achieved within 20 iterations since the last

species was removed, remove the species in the system that is

present in the 14 t amount).

6. Check if function values meet the F-tolerance.

7. Calculate the partial derivative matrix.

8. Call subroutine SCALE to scale the matrix.

9. Call subroutine ELIM to solve the matrix.

10. Calculate the maximum relaxation factor that will ensure that the

mole numbers of all species remain positive.

11. Reduce the relaxation factor if such a reduction will reduce the

Euclidean norm of the vector.

12. Calculate new estimates for the unknowns.

13. Check if X-tolerance is met.

14. After convergence is achieved with only multispecies phases present,

check if any of the single species phases will reduce the Gibbs free

energy of the system using equation 4.11. Recalculate the

equilibrium with each new phase added in turn.

5.8 Elim

Subroutine ELIM solves the partial derivative matrix generated by NLSYST

(the set of equations 4.4) using Gaussian elimination.

5.9 Scales

This subroutine scales the values of the partial derivative matrix so

that the largest element in each row is unity.
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5.10 Fcn

Subroutine FCN calculates the function values (the fi in equations 4.4)

of the system of nonlinear equations. The following calculations are

performed:

1. Shift the X-vector if any species have been removed.

2. Calculate the enthalpy of the mixture by calling subroutine HCAL.

3. Calculate the standard Gibbs free energy of the species by calling

subroutine GCAL.

4. Calculate the mole fractions of each species.

5. Calculate the chemical potential of each species using equations

3.25, 3.27, 3.28, 3.30, or 3.32.

6. Calculate the functions using equations 3.13-15.

7. Shift F-vector for any removed species.

5.11 Activ

Optional user supplied subroutines ACTIVI, ACTIV2, etc. are used to

calculate the activity coefficients of multispecies phase 1, phase 2, etc.
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6. APPLICATION TO AN ELECTROLYTIC SYSTEM

In the course of study of the structure of chemically reacting jets it

became necessary to compute the equilibrium compositions for a mixture of

aqueous ammonia (NH3 ) solution and hydrogen chloride gas (HCl) (Chan et al..

1987). These reactants form a multicomponent electrolytic solution containing

ions and molecules dissolved in water.

The initial compositions of the reactants are specified by the mixture

fraction f (see equation 3.41) and the mass fractions of species in 0 and

fluid streams, Y0 and Y.. The 0 and - fluids were defined to be
1 1pure H~l(g), 0 )i

(Y= 1), and aqueous ammonia solution (Y3a1 NH3(aq)

respectively. The initial concentration of the aqueous ammonia solution

(Y;H3(aq)) varies form 0-30% by mass. The relative amount of HCl to

ammonia solution ranged from 0-100% (i.e.. the mixture fraction ranged from 0

to 1).

The system under consideration was assumed to contain the following

species in the liquid phase: H+ , NH , Cl- NH3(aq)t OH and

H20 (L)  The chemical potential of the solutes were expressed using

equation 3.32. the chemical potential of water (the solvent) was expressed

using equation 3.30. The gas phase (when present) was assumed to consist of

H2
0 (g), NH3(g), and HCl(g). The chemical potentials of the gaseous

species were expressed using equation 3.27. A solid phase consisting of

NH4C ) appears at high concentrations of NH+ and Cl-. The

chemical potential of the pure solid phase was expressed using equation 3.33.

6.1 Species Coefficient Matrix

The formula matrix [A] of the system is written as
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(A) (B) (C) (0) (E) (F) (G) (H) (1) (J)

C1 0 0 1 0 0 0 0 0 1 1

H 1 4 0 1 3 2 2 3 1 4

N 0 1 0 0 1 0 0 1 0 1

0 0 0 0 1 0 1 1 0 0 0

e 1 1 -1 -1 0 0 0 0 0 0

where

A = N+  D = OH- G = H20(g) J =NH4CI(c)

B = NHN E = NH H = NH3(g)4 ~3(aq) 3g

C = C2 F = H20(L) I = HOI(g)

and

Cl = chlorine

H = hydrogen

N = nitrogen

0 = oxygen

e = electron

Performing Gauss-Jorden reduction we obtain

(A) (B) (C) (0) (E) (F) (G) (H) (I) (3)

H 1 0 0 0 -1 1 1 -1 1 0

N 0 1 0 0 1 0 0 1 0 1

Cl 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 1 1 0 0 0

e 0 0 0 1 0 1 1 0 0 0

We see that row 4 and row 5 are, in fact, the same equation. Therefore, we

eliminate row 5, the charge balance equation, as it is redundant. The final

revised formula matrix is
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(A) (B) (C) (0) (E) (F) (G) (H) (I) (J)

Cl 0 0 1 0 0 0 0 0 1 1

H 1 0 0 0 -1 1 1 -1 1 0

N 0 1 0 0 1 0 0 1 0 1

0 0 0 0 1 0 1 1 0 0 0

Therefore, for constant temperature and pressure equilibrium, there are a

total of 14 unknowns - the mole numbers of 10 species and the Lagrangian

multipliers for 4 constraint equations. Note that if during the course of

computation, any species is eliminated from consideration, we must check to

see that all of the rows in the matrix are still independent.

6.2 Calculation of Thermodynamic Data

The thermodynamic data necessary for this system was obtained from a
0 0

variety of sources.. C;, AHf, and AG; for the ions at 298.15 K is from
0

Wagan et al. (1968). AfHf(T) for NH3(aq ) was curve-fit from experimental

data found in Washburn (1930). The polynomial constants for the specific heat

of the gases were obtained from Reynolds and Perkins (1984). Thermodynamic

data for NH4C1(c) is from the JANAF Thermochemical Tables (1971). The

computer program used to calculate the constants Ai, 8, Ci, Di, and Ei of

equation 3.38 and 3.39 is listed in Appendix A.

6.3 Activity Coefficients in the Liquid Phase

The activity coefficients of the species in the liquid phase were

approximated using a theoretical model developed by Edwards et al. (1978).

The Edwards model is based on formalism set forth by Pitzer in a series of

papers (1973, 1974). Edwards, however, neglects all ternary interaction

parameters. Their justification for this simplification is that sufficient
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ternary experimental data is rarely available to fix ternary parameters.

Therefore, the model relies instead on only binary parameters to describe the

interactions between the species in solution. Edwards also extended the

equations to weak electrolytes and molecular species by defining parameters

for ion-molecule and molecule-molecule interactions as well as the Pitzer

ion-ion interactions.

It should be noted that Zemaitis et al. (1986) provides an excellent

summary of the most recent modeling techniques for determining the activity

coefficients in electrolytic solutions. Included are chapters on single and

multicomponent strong electrolytes, strongly complexing compounds, weak

electrolytes and molecular species. The equations Edwards used for the

activity coefficient of a solute are (Zemaitis et al., 1986, pp. 503):

2 f ns 2 ns ns I
In Y= Zf + 2 mB + Z. 1 mmkB.k (6.1)

J-l1 j j=l k=l jkJ

where

fT = -A [4/(1 + 1.2I) + (2/1.2) In (1 + 1.2I)]

8 - B.. + (1! ./21) [1 - (1 + 211) exp (- 2VI)]

8ij = ( 8 1/ 4 12) [- 1 + (1 + 2I + 21) exp (- 21)]

A4 = natural log based Debye-Huckel constant (see equation 6.3)

1 = ionic strength of the solutinn

ns
-0.5 Z m.

and where
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Z ionic charge of species i

ml molality of species i

0B.- binary interaction parameter
nij

binary interaction parameter

ns number of solutes in the solution. Note that this does not include

H2001 )•

The activity of water is expressed as (Zemaitis et al., 1986, pp. 504):

In aw = w (2A 1 3/2/(1 + 1.2/1)

(6.2)
ns ns 0 1 ns

-I I mjmj [ i j + Bii exp (- 21)] - I m i)
1=1 J-1 1=1

The Debye-Huckel parameter for aqueous electrolytic systems is calculated

from (Chen et al., 1982):

A = - 61.44534 exp [(T - T )/T ]

0 02

+ 2.864468 (exp (T - T )/T ]2

0 0

+ 183.5379 In (T/T) - 0.6820223 (T - T )

+ 0.0007875695 (T2 - (TO)') + 58.95788 (T*/T) (6.3)
0

where T = 273.15 K. The estimated values for the binary interaction

parameters used in this study along with the source are shown in Table 1.

Note that, as suggested by Edwards, like charge ionic interactions are

ignored, as well as the B!. term for interactions involving molecules.
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Table 6.1 Binary Interaction Parameters for the NH3-HCl-H 20 System

Binary Pair 8Ij Source IJ Source

H _H+0 (e) 0 (e)

H +-NH4+ 0 (e) 0 (e)

H +-C1 - 0.1775 (a) 0.2945 (a)

H +-OH_ 0.208 (b) 0.018 + (b,c)
0

3.06B8..

H _NH 3(aq) 0.015 (b,c,d) 0 (b,c,d)

NH +-NH + 0 (e) 0 (e)

NH -C1 - 0.0522 (a) 0.1918 (a)4

NH +-OH_ 0.06 (b) 0.018 + (b,c)
40

3.06B8..

NH4 3(aq) 0.0111 (b) -0.020 (b)

Cl -Cl 0 (e) 0 (e)

Cl -OH_ 0 (e) 0 (e)

C1 -NH 3(aq) 0 N/A 0 N/A

OH -OH_ 0 (e) 0 (e)

OH -NH 3(aq) 0.227 (b,c) 0 (b,c)

- 1 .47E-3T

+ 2.6E-6T 
2

NH3(aq)-N 3(aq) - 0.026 (bc) 0 (b,c)

+12.29/1'

(a) Pitzer, 1979
(b) Maurer, 1980
(c) Edwards et al., 1975
(d) Edwards et al., 1978
(e) Interactions between like-charged ions are neglected.
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In order to determine the accuracy of Edwards' formulation for the

species under consideration in this study, a comparison was made of the

theoretically derived and experimentally measured activity coefficients for

two strong electrolytes. Figures 6.1 and 6.2 show a comparison of activity

coefficients calculated using Edwards model with experimental data for

hydrochloric acid at 250 C and 500 C respectively. Figure 6.3 shows the same

comparison for aqueous solutions of NH4Cl(aq) at 250 C. In all cases the

agreement is extremely good at low to medium concentrations, but significant

deviations are present at high concentrations. This may be due to the fact

that the binary interaction parameters for these strong electrolytes are

generally fit to experimental data of no greater than 6 molal concentration.

Predicted results exhibiting similar deviation at high concentration for the

activity coefficient of hydrochloric acid have been obtained by Zemaitis

(1986) using several state-of-the-art theoretical models, including Pitzers'

original formulation. Clearly the art of modeling strong electrolytes is not

developed to the point where solutions at high concentrations can be predicted

accurately.

6.4 Activity Coefficients in the Gas Phase

The gas phase was assumed to be non-ideal due to the highly polar nature

of the molecules present. As suggested by Prausnitz et al. (1980) the virial

equation was chosen as the mechanical equation of state. The virial equation

obtained from a power series expansion of pressure can be written as:

Pv/RT = 1 + B mP/RT + C (P/RT) 2 + ... (6.4)

where v is the molar volume of the mixture, and Bm and Cm are the second

and third virial coefficients for the gaseous mixture, respectively. At low
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to moderate densities, the virial equation may be truncated after the second

term:

Pv/RT = 1 + BmP/RT (6.5)

According to Prausnitz et al. (1980, p. 28) the virial coefficient for a

mixture may be calculated from the individual virial coefficients of the

components by the following relation:

ngas ngas
Bm (T, X1, X2 # ... ' X ngas) = I I XiX.Bi  (T) (6.6)

ngs i=l j=1

The Bij are the individual pure component (i equal j) and cross component (i

not equal j) second virial coefficients. The activity coefficients may be

obtained from:

ngas
1n Yi = (2 1 X Bj - Bi) P/RT (6.7)

j=l 
m

The method of Hayden and O'Connell (1975) was used to calculate the

Bij. The necessary input parameters for each component are: critical

temperature Tc, critical pressure Pc' dipole moment D., and mean radius

of gyration RO. In addition, an association parameter Qij is needed for

each binary pair. These parameters are given for a large number of species by

Prausnitz et al. (1980) pp. 145-178. The values used in this study are

presented in Tables 6.2 and 6.3. Prausnitz also presents the numerous

equations (approximately 30) necessary to calculate the Bij (pp. 130-133).

They will not be repe3ted here.
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Table 6.2. Molecular Species Data for Virial Model

Species Tc Pc RO OM
(K) (bar) (angstrom) (Debye)

H 20 647.37 221.20 0.615 1.83

NH3  405.54 112.80 0.853 1.47

HCl 324.54 82.60 0.299 1.07

Table 6.3. Binary Association Parameter Qlij for Virial Model

i\j H20(g) NH3(g) HC1(g)

H20(g) 1.70 0.0 1.38

NH3(g) 0.20 0.0 2.20

HCl(g) 0.0 0.0 0.0
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In order to check the accuracy of the model, the virial coefficient of

steam was calculated using Hayden and O'Connells' method (Figure 6.4). The

results are identical with those presented by Prausnitz et al. (1980), p. 30.

In addition, the specific volume of steam was calculated from the virial

equation as follows

v = RT/P + Bm (6.8)

These results, along with results using the ideal gas equation, are

compared against experimental results in Figure 6.5. The agreement near the

boiling temperature is noticeably better with the virial equation.

6.4 Binary System Equilibrium Calculations

Using these activity coefficient relationships, the computer program was

tested for three binary systems in which experimental data was available.

Figure 6.6 shows predicted and experimental solubility data for the

NH4Cl-H 20 system. Agreement is good at lower temperatures, but deviates

significantly at higher temperatures. It is felt that this deviation at high

temperatures may be due to the variation of the partial molar specific heat of

NH+ and Cl- with temperature. Values for these ions were only4

available at 298.15 K. Figures 6.7 and 6.8 show predicted and experimental

boiling diagrams for the NH3-H20 system and for the HCl-H 20 system,

respectively. It can be seen that the agreement for the weak electrolyte,

NH3(aq), is excellent, while the agreement for the strong electrolyte,

HCl (aq), is only fair. This discrepancy is a direct result of the inability

of the activity coefficient model for HCl(aq) to accurately predict solution

behavior at extremely high concentrations.
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6.6 Equilibrium Calculations for HCl-NH 3-H20 System

Basically encouraged by the test cases, the computer program was used to

predict the equilibrium compositions of the complete HCl-NH3-H20 ternary

system. The version of the computer program used for this calculation is

listed in Appendix A. Results for 0%, 10%, 20%, and 30% concentrations of

ammonia in water are shown in Figures (6.9-16). Mixture density, temperature,

phase and species mass fractions and the void fraction (volume fraction of the

gas phase) are plotted against mixture fraction, f. Calculations presented in

this form (using mixture fraction to specify the relative amount of reactants)

can be used directly in the reaction zone modeling technique used by this lab

(Chan et al., 1987-1988). Overall, these results are fairly close to those

obtained by previous methods for this system (Chan et al., 1987-1988). The

primary difference is that the modeling techniques described in this report

were able to predict the formation of a solid phase, NH 4C1 (c).
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FIGURE6.1 MEAN ACTIUITY COEFFICIENT. HCL AT 2S DEG. C
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FIGURE 6.2 MEAN ACTIUITY COEFFICIENT, HCL AT 5 DEG. C
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FIGURE 6.3 MEAN ACTIUITY COEFFICIENT. NH4CL AT 2S DEG. C
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FIGURE 6.4 SECOND UIRIAL COEFFICIENT FOR STEAM
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FIGURE 6.S SPECIFIC UOLUME OF STEAM AT 0.1 MPA
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FIGURE 6.6 SOLUBILITY OF NH4CL(C) IN H20(L), 1 ATM
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FIGURE 6.9 PURE H20(L) + HCL(G), TINF=TO=298K. 1 ATM
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FIGURE 6.11 12-' NH3(AO) + HCL(G). TINF=TO=298K. 1 ATM
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FIGURE 6. 13 22, NH3( A0) + HCL( G ). T I NF =TO =298K, 1 ATM
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F IGURE 6.15S 30.- NH3( O) + HCLC G) T INF =TO298I'K, 1 ATM
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7. APPLICATION TO THE SODIUM-CHLORINE SYSTEM

In recent years, several experimental and theoretical studies of the

structure of a gaseous chlorine jet discharging into a stagnant bath of liquid

sodium have been published (Avery, 1974, Chen and Faeth, 1982, and Cho et al.,

1987). Present work by this lab has focused on extending the modeling

techniques of Chen and Faeth (1982) to include the effect of radiation and

enclosure on the reaction zone (Chan et al., to be published). A necessary

input for these calculations is the equilibrium state reached after mixing

various amounts of nozzle and bath fluids. In this system the bath fluid

(m) consists of pure liquid sodium, Na(L). The nozzle fluid (0) is pure

chlorine gas, Cl2 '

7.1 Gas Phase

Following the lead of Avery (1974), the gas phase was assumed to consist
of Cl (g), CI2(g) , Na(g), Na2(g ) , NaCl(g), and Na2CI2(g ) in a perfect gas

mixture. Thus, the chemical potentials of the gaseous species were described

using equation 3.25. Ionization of the gases was neglected, as preliminary

calculations revealed extremely low concentrations of ionic species, even at

high temperatures.

7.2 Solid Phases

Both the metal, Na(s ) , and the salt, NaCl(s ) , were considered in

single species solid phases. Consequently, equation 3.33 was used to describe

the chemical potential of these species. Of course, the solid metal does not

appear in the system unless the bath temperature (T') is below the melting

point of sodium (371K). The bath temperature in the present calculations is

above the melting point of the metal.
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7.3 Liquid Phase

The liquid phase consists of the liquid metal, Na(L), and the molten

salt, NaCI (L) . Bredig (1964) has shown that these species may form a two

phase, immiscible liquid mixture. The lighter liquid is sodium-rich,

containing a small amount of dissolved salt. The heavier liquid is salt-rich,

containing a small amount of dissolved sodium. Avery (1974) has used the van

Laar model (Lewis and Randall, 1961, pp. 287-288) to accurately predict the

mutual solubility of these two species. For a binary solution (denoting

species Na(L ) and NaCl(L) as 1 and 2, respectively), the activity

coefficients may be expressed as:

In Y = A b z 2/RT (7.1)

In Y = A 2bz/RT (7.2)

where

zI = NIb 1/(N1 bI + N2b2 ) (7.3)

z2 = N2b2/(N1 b1 + N2b2 ) (7.4)

The preceding equations contain three empirical parameters which must be

fit to experimental solubility data (bl , b2, and A1 2). We can reduce

this to two parameters by defining B = b2/b1 and A12 = bIA 12. The equations

for the activity coefficients then become:

In Y = A12 [(BN 2/(NI + BN2 )] 
2/RT (7.5)

In Y = BA12 (N /(N1 + BN2)]2/RT (7.6)

Avery (1974) has fit AI2 and B to experimental data. The resulting

expressions are
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B = 0.929 (7.7)

A12 = 23.36 - 0.01325 T (7.8)

where A12 is in units of Kcal/gmole and T in units of K.

7.4 Thermodynamic Data

The necessary thermodynamic data for this system was obtained from data

files provided with the CEC-72 computer code (Gordon and McBride, 1971).

These files consist of the polynomial constants for curve-fits of the

thermochemical data of each species. The original source of the data for most

of the species is the JANAF Thermochemical Tables (1971). Each species has a

set of 14 coefficients. Seven coefficients apply to the low temperature range

(300-1000 K), and seven coefficients apply to the high temperature range

(1000-5000 K). The CEC-NMS computer program was modified to read this data

file and calculate the specific heat, enthalpy, entropy, and Gibbs energy of

the relavent species. For a listing of the computer code, see Appendix B.

7.5 Results

The equilibrium results for To = 1130 K nd T = 298.15 K are

presented in Figures 7.1 and 7.2. These particular conditions were chosen to

allow direct comparison with results presented by Chen and Faeth (1982). The

sodium-rich liquid is denoted by L-1 and the salt-rich liquid is denoted by

L-2. There is essentially no difference in the results calculated by the two

different methods.
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FIGURE 7.1 NA(L)-CL2(G) SYSTEM. TINF=1130K. T=298K, 1 ATM
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8. APPLICATION TO THE LITHIUM-FLUORINE SYSTEM

A system similar to the sodium-chlorine reactant pair described in the

previous section results from the injection of gaseous fluorine, F2(g), into

a stagnant liquid lithium (Li(L)) bath. Once again, the approach used is

based on the thermodynamic work of Avery (1974).

8.1 System

The gaseous phase was assumed to consist of F(g), F2 (g), Li(g), Li2 (g),

LiF(g), Li2F2 (g), and Li3F3 (g) in a perfect gas mixture. Ionization was

neglected as preliminary calculations showed that the maximum concentration of

ions at the highest temperatures was approximately 1% by mass.

Li(s ) and LiF(s ) , the solid metal and salt, were considered as single

species phases. Immiscible liquid phases consisting of LiF(L ) dissolved in

Li(L ) and Li(L ) dissolved in LiF(L ) were modeled as before, using the

van Laar model. The coefficients A12 and 8 were provided by Avery (1974)

as

B = 0.725 (8.1)

A;2 = 24.6 - 0.01072 T (8.1)

where Al2 is in units of Kcal/gmole. Note that Li(L ) is designated by

1 and LiF(L) by 2. As in the sodium case, thermodynamic data was read in

from the CEC-72 data file.

8.2 Results

The results of the equilibrium calculations for Ta = 1130 K and T0

= 298.15 K at 1 atmosphere are shown in Figures 8.1 and 8.2. No calculations

of this type (based on mixture fraction) for this particular system have been
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presented in the literature. Consequently, comparison with other calculation

methods is not possible. We can see, however, the similarities of the

lithium-fluorine system to the sodium-chlorine system described in Section 7.

The primary differences are the higher boiling point of the liquid lithium

(1620 K vs 1156 K for sodium), and the higher peak equilibrium temperature

(4573 K vs. 3352 K for sodium-chlorine reaction).

For the initial conditions presented here, the liquid phase did not split

into two immiscible liquids. For these calculations, the salt-rich liquid

does not form until the temperature of the mixture is well above the consolute

temperature of 1603 K (Bredig, 1964, p. 373). Note that the consolute

temperature is the highest temperature that the two liquids coexist. Had the

initial bath temperature been lower, it is likely that the solubility limit of

the salt in the metal would have been reached at a lower temperature. Then

the salt-rich liquid would begin to form Q a temperature below the consolute

temperature. In this case an immiscible liquid region would appear as in the

sodium system described in the previous chapter.
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FIGURES.1 LI(L)-F2(G) SYSTEM. TINF=1130K. TG=298K. 1 ATM
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9. APPLICATION TO THE LITHIUM-SULFUR HEXAFLUORIDE SYSTEM

The system resulting from the injection of gaseous sulfur hexafluoride

(SF6(g)) into liquid lithium (Li(L)) is discussed in this section. This

particular pair of reactants is under consideration as a thermal energy source

for underwater applications (Mattavi et al., 1969; van der Sluys, 1975;

Biermann, 1975; and Groff and Faeth, 1978A). The thermodynamic model used is

based on the work of Groff and Faeth (1976, and 19788).

9.1 System

The gas phase was assumed to consist of the species Li(g), Li2 (g) '

LiF(g), Li2F2(g), Li 3F3(g), SF6 (g). and Li2S(g) in an ideal

gas mixture. These preliminary calculations do not include any of the lower

sulfur fluorides such as SF4, etc. It is likely that they would be present

in significant amounts, especially at higher temperatures. The presence of

ions in the gas phase was also neglected. Three solid species were considered

in separate phases: Li(s ) , LiF(s ), and Li2S(s) .

As in the previous two sections, the liquid metal, Li (L) and molten

salt, LiF (L) form two immiscible phases. In the sulfur hexafluoride-

lithium system, however, there is an additional component, Li2 S(L)

dissolved in each phase. The activity coefficients of the immiscible liquid

phases are predicted using the van Laar model extended to multicomponent

systems (Wohl, 1946). The activity coefficient of the kth species may be

given as

bk XX (Aik - 0.5Aij) b b NiNijin kk = (9.1 )
InYkJ RT (I Nib i ) 2  .1

i
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where A and b are empirical parameters. Note that A. . 0, and A.j = Aji.

The equation given here differs from that presented by Groff and Faeth (1976,

p. 22, and 1978, p. 328). We believe this equation to be the correct one.

For a system with three components, the number of empirical parameters

may be reduced by one by defining new parameters Aij and Bi as (Groff and

Faeth, 1976, pp. 20-21):

A.. = b.A.. (9.2)

and

B1 = bl/b 2 ; B2 = b2/b3 ; and 83 = bl/b 3 = BIB 2  (9.3)

The subscripts 1, 2, and 3 refer to Li(L) , LiF(L) , and Li2S, respectively.

Equation 9.1 may then be written as

I I (Aik - 0.5Aij) (bi/bk) NiN(

RT (I Ni (bi/bk)]2 (9.4)

1

Groff and Faeth (1978B) have estimated the empirical parameters from experi-

mental data as a linear function of temperature using the least squares tech-

nique. The resulting equations are:

A12 = 121.53 - 0.05130 T (kJ/mole) (9.5)

A13 = 53.287 - 4.OOE-4 T (kJ/mole) (9.6)

A23 = 0 (9.7)

and

B1 = 2.5846 - 8.132E-4 T (9.8)
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83 = 1.36 (9.9)

82 = 83/81 (9.10)

9.2 Thermodynamic Data

Thermodynamic data for all three forms of Li2S (lithium sulfide) is

extremely limited. Groff and Faeth (1976, pp. 131-138) estimated the required

spectroscopic data for determining the properties of Li2S(g ) using

statistical methods. They felt the accuracy of the resulting thermodynamic

dat for Li2S(g) to be within +5%. Their equations are used in this work

to calculate the enthalpy and Gibbs energy of gaseous lithium sulfide. Groff

and Faeth estimated thermodynamic data for Li2S(S) and Li2S(L) from

Na2S, Li20, and Na20 using Kopp's rule (Lewis and Randall, 1961, pp.

57-58). Their estimated values were used to calculate the enthalpy and Gibbs

energy for solid and liquid lithium sulfide. The thermodynamic data for all

other species were taken from the data file provided with the CEC-72 computer

program (Gordon and McBride, 1971).

9.3 Results

The equilibrium results for T* = 1130K and T0 = 298K are presented

in Figures 9.1 and 9.2. No experimental data is available to compare these

results to, nor have any calculations of this type appeared in the

literature. As in the lithium-fluorine calculations presented in the previous

section, the initial conditions are such that salt-rich and metal-rich liquid

phases do not appear simultaneously at any mixture fraction.
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FIGURE 9.1 LI(L)-SFS(G) SYSTEM. TINF=1130K. TO=298K. 1 ATM
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10. CONCLUSIONS

The computer program CEC-NMS has been found to effectively compute

chemical reaction equilibria for a variety of complex systems. Use of the

direct minimization technique allows equilibrium to be calculated without

regard to the actual reaction equations and allows easier removal of trace

species.

For the majority of calculation points, convergence was achieved in under

10 seconds on a Univac 1100 mainframe computer. While not unreasonable,

future work might include modifications to the program to reduce this

calculation time. This would become more important if the program were to be

used on a microcomputer or if extremely complex systems were considered.

While an attempt was made to make the program user-friendly, improvements

in this respect are always possible. This might include altering the

structure of the program to improve readability and developing more detailed

documentation. Another improvement to the program would be adding a routine

for automatically checking and modifying the species coefficient matrix if it

becomes singular during the course of computation. Finally, while the program

has converged with rather arbitrary initial guesses for all attempted systems,

there are algorithms available for automatically providing initial estimates

based on the Gibbs free energy of the species (Smith and Missen, 1982, pp.

201-204, and van Zeggeren and Storey, 1970, pp. 128-132). The inclusion of

such an algorithm may be useful for certain systems.
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APPENDIX A-D PROGRAM LISTINGS

Legible copy can not be reproduced.
Interested readers should contact the author (S.H. Chan).
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